Tag Archive | "U.S. crops"

Tags: , , , , , , ,

Concerns Grow About CRISPR & Gene Editing

Posted on 16 December 2015 by Jerry

International controversy is growing about the potential of the new genetic engineering technologies, especially CRISPR. All sorts of groups are meeting to gain some measure of control over these technologies by setting up agreements on how to evaluate the ethical issues and control the experiments that are done.

These include in 2015 the Hinxton Group, the National Institute of Health, the Welcome Trust and various conferences like one hosted in Washington DC and another in Napa, California. In addition, interested parties are writing editorials that oppose strict limits on or banning alterations of the human germline using CRISPR etc. Most notably Frank Church at Harvard Medical School.

In a previous article on CRISPR (see the August 2015 posting on this web site under Genetic Engineering, “CRISPR”, Breakthrough or Trouble), there is an outline of the technological innovation. The problem is that the development of CRISPR/Cas9 and other technologies have made alteration of DNA too accessible and available even to amateurs playing in their garages. This technology is very accurate and extremely low cost.

As an example, an article in the December 3, 2015 issue of Nature magazine identifies the cost of a widely used genetic plasmid created with the CRISPR-Cas9 technology at $65 or less.  It is ordered online and shipped in the normal mail.  It requires little specialized training to use.

Most scientists say that serious alterations to genetics are still beyond the hobbyist. They say the CRISPR technology and understanding of it are not enough for mastery or major changes. They also claim that most institutions do all of their experiments as a function of government grants that are not given to hobbyists. Even though there is no direct regulation of the area they claim this indirectly regulates experimentation at least for now.

There are many issues but the one that troubles scientists most is the new ability to cheaply and effectively edit the genomes of all sorts of living entities. Particularly troubling are alternations to germline cells (sperm and eggs) in early human embryos. By definition, germline cell alterations can be passed to future offspring of the resulting human. This raises the specter of “designer babies” with their genes altered to reflect the wishes of expectant parents.

Beyond the specter of eugenics, it also recognizes that in theory altering the germline cells of human embryos can change a number of genetic traits. The elimination of babies carrying harmful, disease-ridden genes that inhabit various family trees is an objective most people would favor. Unfortunately, these potential applications remain a way off into the future.

Of course there are also positive possibilities from CRISPR. CRISPR-Cas9 is being used to develop “gene drives” that spread proper genetic changes quickly throughout an entire population. Groups that want to eradicate malaria are testing a couple of methods on mosquitos. One group is using the technology to produce DNA that is not infected by or is immune to the parasite P. falciparum that causes malaria. The drive represents creating two or more strings of the requisite DNA to be passed on to all offspring. Normally, a mutation is spread to only 50% of the offspring. The “gene drive” feature allows the new DNA to be passed to all offspring.

The second alternative is being worked on at the Imperial College London and involves a gene drive that inactivates genes that control egg production in female mosquitos. They believe this would be a way to drastically reduce the overall population of mosquitos.

The concerns raised with these two approaches relate to the use of gene drives and fear that genetic changes would wipe out mosquitos entirely in an area. This would eliminate a species that might fill a significant need in the local food chain. The fear is there would be no way to call back a change that produced unforeseen effects elsewhere in the DNA.

Already the CRISPR technology is being used to alter the genetic code of plants that are subject to some regulation.   This has been identified as a faster and more accurate way of engineering insect resistant strains of crops by disabling specific genes in wheat and rice. Disabling genes is not subject to the same regulation as introducing new genes into an organism i.e. in the European Union.   For this reason, some South Korean scientists see this method as a way to side step normal regulation imposed in the EU and elsewhere.

Genetic engineering is a technology area to be mastered and is a governmental objective in countries that have international ambitions. An article in the November 18, 2015 issue of Nature magazine quotes Minhua Hu, a geneticist at the Guangzhou General Pharmaceutical Research Institute as stating, “It’s a priority area for the Chinese Academy of Sciences.”

The availability and the ease of altering genes have prompted a host of new experiments including those overseas.   For example, the previously cited article discusses the flurry of experiments taking place in China and research papers being written that describe CRISPR-modified mammals such as sheep, goats, pigs, monkeys and dogs.

In addition, there is discussion in the same article about research in China to increase the muscle and hair growth of goats. So far 10 modified goat kids have larger muscles and longer fur than normal goats. The article calls them “designer livestock”.

Lei Qu, a genetic researcher from Yulin, who has implemented CRISPR-Cas9, is quoted as stating, “We believe gene-modified livestock will be commercialized after we demonstrate (that it) is safe.” He predicts it is a simple way to boost the sale of goat meat and cashmere sweaters from his province in China.

The dilemma faced by scientists the world over is that these new genome splicing technologies almost take these experiments out of their hands and put them into the hands of amateurs. This raises alarm bells in most of the scientific community. Most scientists want to rely on peer pressure to limit the behavior of hobbyists. They feel that if enough organizations voice concern and restraint this will cause neophytes to pause before they try major alterations of genetic material. They want self-regulation rather than have the government step in.

A strong case can be made for government regulation to protect the populous and more importantly the genetics of life itself. It would be so easy to alter the DNA of an organism and set it free in the environment that havoc might result. While government control would surely slow down progress and reduce the personal opportunities all these scientists have to make money, it would protect people and the genetics of all living organisms on the planet. The trade-off would be worth it from the perspective of a non-scientist.

Use the following links to obtain additional information or see the original articles used for reference in this article.





















Comments (0)

Tags: , , , , , , ,

E.U. Defeat and Study Concerns

Posted on 12 January 2015 by Jerry

After decades of resistance by countries to E.U. directives to accept genetically engineered (GE) crops, a committee of the E.U. has acknowledged the rights of its countries to ban them.  On December 3, 2014 representatives of the E.U. Parliament and E.U. member states reached agreement to allow member countries to ban genetically engineered crops in their own territory.  If the whole Parliament and collective E.U. countries endorse the agreement and it goes into effect in 2015, it represents a major capitulation.

Resistance to GE crops is fueled by periodic studies that suggest they are potentially harmful to the health of either the animals or humans that consume them.   An example is a study completed in 2013 and published in PLOS ONE that stated that complete genes from a GE crop are transferred whole from the human digestive system into the circulation system.

Scientists admit they do not know what the long-term effects on humans are from these genes.  They also admit they do not know the mechanism that allows the genes to pass the blood barrier to enter the human circulation systems.  It is this ignorance that suggests these foods should be put on hold until we know more.  One Canadian scientist, David Suzuki PhD, has said that human beings are part of a “massive genetic experiment”.

Another factor causing the refusal of the E.U. member states to adopt GE crops may be the ethics of moving ahead when there are still outstanding issues to be resolved.  There has been considerable work analyzing the moral issues raised by genetically modified organisms.  These support a slower adoption of these crops.

Of course none of these factors are an issue in the U. S. that produces more than half the GE crops consumed around the world.  GE crops were planted on 169 million acres in the U.S. in 2013.   These crops (mainly corn, cotton and soybeans) are the predominant genetically engineered crops.

The U.S. market leader, Monsanto, has found terrific synergy with its herbicide “Roundup ©.”  GE crops that resist Roundup © have led to a significant increase in the amount of the weed killer (glyphosate) sold as well as the seeds of crops that cannot be killed by Round-up ©.  This is because they are Roundup Ready ©.

The use of Monsanto’s weed killer (Roundup) on crops that resist its influence (Roundup Ready) supposedly leads to less use of the weed killer.  Critics who monitor the sale of the herbicide however see a disproportionate increase in its sales.  This would indicate that farmers are indiscriminate in their use of the herbicide since they are using seeds which produce crops that are unaffected by glyphosate (Roundup ©).

An open recognition of this agreement represents a failure by the E.U. and a major defeat for agricultural and chemical companies that produce and have been sponsoring the GE crops.  Of interest however are the countries in the E.U. that are on each of the respective sides of the issue.

The bigger European countries of France and Germany have actively opposed planting of genetically engineered crops.  They have been joined by Austria, Hungary, Greece, Luxembourg and Bulgaria.

This opposition in Germany is surprising given the companies who headquarter there.  Bayer AG and BASF are German companies that have supported GE crops.  Why do the Germans continue to adamantly oppose planting these crops when their own business leaders recommend them?

Some of the smaller E.U. countries, presumably more susceptible to political pressure, are raising genetically engineered crops that have received approval.  These countries include Spain, Czech Republic, Slovakia, Portugal, Romania and Poland.  They have been joined by the UK that supports GE products.  All of the other countries fall somewhere in between.

Both the E.U. reversal and the recent health studies should give encouragement to those who keep trying to get mandatory labeling passed in the U.S.  They are not alone in their opposition to genetic modification of foodstuffs or in their insistence on mandatory labeling.  While we may have missed the opportunity to ban these crops, there is still time to let the consumer decided what to put in their bodies.  This is what labeling will accomplish.

Use the following links to access more information or the original source documents used for this article.






Comments (0)

Tags: , , , , , , , , , , , , ,

Are There Cracks in the GM Armor?

Posted on 19 October 2013 by Jerry

Below the surface there are cracks in Monsanto’s armor and storm clouds threaten its future.  If we only look at Monsanto’s results for 2013 things are going great.  Sales are up to $14,861 billion while gross profit and net income are at $7,653 billion and $2.482 billion respectively.  Their total seeds and ‘genomics’ (genetically modified products which includes almost all seeds) generated $10,340 billion.  In addition, Monsanto hired the new lobbying firm, the Lincoln Policy Group, of ex-Senator Blanche Lincoln, who for two years was the chairwoman of the Senate Committee on Agriculture, Nutrition and Forestry.

But 2013 was not as positive as it seems.  Events in the European Union have been so negative that Monsanto has announced it will no longer seek approvals for its GM crops in the E.U.  Activists and governments continued to block approval of Monsanto’s applications for genetically modified crops.

While the European Food Safety Authority (EFSA) has deemed eight genetically modified crops as safe beginning as far back as 2005, they and five other crops are still under study and have been effectively blocked.  European governments have stopped implementation of the EFSA’s approved crops due to political pressure of activists and continued scientific disagreement.  Monsanto announced instead that its focus in the E.U. would be on its traditional seed business.

Also reflecting the rejection of GM products in the E.U. in 2012, BASF Plant Sciences announced they would abandon the development and sale of their European Union product Amflora.  Amflora is a high starch GM potato designed for industrial applications like the production of paper.  BASF instead moved their development and sales resources for this product to a much more supportive United States.

Indicative of the hostility to GM products in the E.U. the Swiss government has announced it will create a permanently protected federal research area for genetically modified crops.  This is to help control the increase of vandalism and the costs it is experiencing.  It is estimated Swiss GM researchers spend 78% of their research funds on security.  Because of this, the government approved an annual expense of €600,000 (~$822,000) for a secure field test site of approximately 3 hectares (~7.4 acres).  In 2008 masked activists threatened researchers and destroyed about 1/3 of the GM plants grown at another location.

Even in the U.S., the home of genetic engineering and the biggest crops from GM grains, there are signs of eventual labeling of GM crops.  Connecticut became the first state to pass legislation requiring labeling of GM foods.  Unfortunately, given the small size of the state, the bill only goes into effect after a number of other states in the Northeast follow suit.

Almost half of the  states have introduced legislation or ballot initiatives requiring mandatory labeling.  The biggest battle that is raging is in the state of Washington where once again the GM industry has brought its big wallet to the fray.  So far opponents of the legislation, the GM industry, have raised over $17 million compared to the $5 million raised by the backers of the initiative.  We will know how this initiative fares by the end of the year.

While labeling is being hotly contested in the U.S., labeling requirements have been embraced by over 64 countries in the world.  These include Australia, Brazil, China, Japan, South Africa, South Korea, and all of the countries of the European Union.  We can only hope the GM crop industry decides its state-by-state approach is too costly.

Rumors abound about secret negotiations at the federal level.  President Obama committed to mandatory labeling of GM food in his second term.  This commitment will require we hold the Obama Administration’s feet to the fire to require legislation with real teeth to accomplish the labeling.  Toothless legislation is the House and Senate’s tradition when big business is involved.   This continues the uphill struggle.

Use the following links to obtain more information on these topics or to see source documents.








Comments (0)

Tags: , , , , ,

Beyond Animal, Ego and Time: Chapters 12 & 13 – Protect Life from Nuclear Weapons and Synthetic Biology

Posted on 09 May 2013 by Jerry

This posting continues the serialization of my book on this website.  As an incentive to readers to return to the site, each month I will post at least one Chapter of the book until the entire book is posted.  Scroll back over the last few months to read earlier “Beyond Animal, Ego and Time” chapters.  The book provides context for the blog, clearly explaining the underlying philosophy and identifying critical issues of our time. In the book Chapters 12 and 13 address the threats of nuclear weapons and synthetic biology.  These represent a very familiar threat to life on the planet (nuclear weapons) and one that continues to be largely unknown (synthetic biology).  Again I encourage those who read these chapters to comment or ask questions.





Protect Life Imperative — Nuclear Weapons

There is another first and continuing anthropogenic threat to humanity. It is the existence of large arsenals of nuclear weapons. On July 16, 1945 the United States led an unknowing world into the nuclear age with the Trinity test nuclear explosion in New Mexico. On August 6, 1945 the world first experienced the terror of a nuclear bomb used in war with the bombing of Hiroshima.90 This was followed in three days with the destruction of Nagasaki. Since those fateful days the world has labored under the threat of nuclear war.

Nuclear weapons have proliferated. On August 29, 1949 the USSR tested its first nuclear weapon at Semipalatinsk, aka Semey, in Kazakhstan near the border of China.91 The United Kingdom tested its first weapon in 1952; France in 1960; The People’s Republic of China in 1964; India in 1974; a suspected joint test of their first nuclear weapon by Israel and South Africa in 1979; Pakistan in 1998; and North Korea in 2006. At last count nine countries have acknowledged developing and testing nuclear weapons with one additional country, Israel, believed to have developed them but without confirmation.

In the intervening years of mushrooming deployment during the Cold War, the world has watched the ongoing chess game that has held potential nuclear combatants at bay.92 The present governing agreement binding the actions of the United States and Russia is the New Strategic Arms Reduction Treaty (New START). Signed on April 8, 2010, by President Barack Obama and Russian President Dmitry Medvedev, the New START is largely an extension of a previous agreement, the Strategic Offensive Reductions Treaty (SORT) also known as The Moscow Treaty. The SORT agreement was originally signed by President George W. Bush and President Vladimir Putin in 2002. This New START agreement limits each country to 1,550 launch ready strategic nuclear warheads and limits the number of deployed ballistic missiles and heavy bombers to no more than 700 on each side. It does not limit how many warheads are in “storage”, that is, available but not deployed or ready for immediate launch. Hypothetically warheads in “storage” and missiles not ready for immediate launch may mean they sit ready to receive targeting instructions electronically. Present estimates indicate that the United States and Russia each maintain an arsenal of between 5,000 and 10,000 weapons that are not launch ready.93

This treaty represents a reduction of an estimated 40,000 launch ready warheads from the peak armaments in the Cold War period. While it took effort to get both sides to reduce their weapons to this level, it was possible only because the level continues to represent effective “Mutually Assured Destruction (MAD)”. Mutually Assured Destruction was the official U.S. policy doctrine of massive retaliation first articulated in the 1950’s.

If you take the top 216 cities in the United States, those with populations over 200,000 people, you have a total of 150 million people or roughly one half of the total population.94 Even if Russia targeted four warheads at each of these cities it would still have a little less than half of its deployed strategic warheads available. A similar situation exists in targeting Russian cities. The loss of a sizable portion of its population in its 200 plus largest cities would be a crippling event for either country. For these reasons reductions in nuclear warheads up to this point are political illusions of progress. They are illusions because we have succeeded in reducing nuclear warheads of the two nuclear super powers from a level that can only be described as lunacy to a level representing absurdity.

The anticipated effects of a nuclear war between the two super powers have been well documented. Studies in the 1980’s estimated deaths from nuclear blasts and airborne radioactivity at hundreds of millions to over a billion people. To these we can add the effects of a “nuclear winter” with its attendant hardships for human survival. In addition, in 1973, it was established that high-yield atomic airbursts chemically burn the nitrogen in the upper atmosphere, converting it into oxides of nitrogen. We know these oxides combine with and destroy the protective ozone in the Earth’s stratosphere. If one assumed a nuclear exchange had occurred between the United States and the U.S.S.R. involving half of the arsenals at the time, Nobel Laureate Paul Crutzen and J. Birks estimated destruction of between 30% to 70% of the ozone layer in the northern hemisphere and 20% to 40% in the southern hemisphere.95 This would have serious if not fatal consequences for the biology of the entire planet.

The possibility of such a calamity should be sufficient incentive for the U. S. and Russia to eliminate their nuclear arsenals. To explore why these deadly arsenals still exist, we must examine the reason we made and now store nuclear weapons. To do so we must first look at the histories of three countries, Russia, China, and the United States.  These have been the central characters in the nuclear drama. Their experiences with nuclear weapons, confrontations with each other, and reactions give insight about how we arrived at the present reality. This in turn can help us reach conclusions for what must now be done.

The original reason for development of nuclear weapons, beyond scientific curiosity to build them because we could, was the threat of world occupation and domination by Axis powers in World War II. The fear that Germany would develop nuclear weapons before the Allies was enough to justify our development of the weapon. It is clear the use of the weapon with Japan hastened Japan’s surrender and saved Allied and Japanese lives. Less clear was how we dealt with the morality of killing hundreds of thousands of human beings when we dropped nuclear weapons on Japanese cities. Many have suggested we should have first demonstrated their destructive power by showing the Japanese government an explosion over the open ocean. Many believe this would have caused an eventual surrender of the Japanese. Clearly these factors served as justification or the reason-for-being of nuclear weapons.

Nuclear weapons survived the end of the war and served to neutralize both sides by creating a stalemate in the Cold War. The Cold War was the nonviolent worldwide struggle between Capitalism (and democracy) and Communism (and central control/totalitarianism). We should remember that in 1848, long before World War II, Karl Marx and Friedrich Engels wrote The Communist Manifesto that opposed the excesses of capitalism at the time. Communism achieved legitimacy almost 70 years later with the October Revolution of 1917 when Vladimir Lenin, leader of the Bolshevik Party, took power in Russia.

The communist ascension to power in a major country stimulated excitement about revolution and provided impetus for the rapid political organization of communism around the world. Between 1917 and 1920 communist party organizations were founded in 17 countries; Finland, Austria, Hungary, Poland, Lithuania, Serbia, Yugoslavia, Greece, France, Great Britain, Czechoslovakia, Belgium, Mexico, Argentina, Palestine, Australia, and the United States of America. The next decade saw communist organizations begun in 18 other countries; Norway, Italy, Portugal, Spain, Iceland, Chile, Guatemala, Brazil, Ecuador, Peru, Costa Rica, Puerto Rico, Egypt, Syria, Lebanon, Iraq, South Africa and New Zealand.

The governing establishments in all of these countries were shaken by the rapid spread of communism as a political force and the scary talk of revolution that came with it. This was especially true in the United States that saw itself as the champion of capitalism and democracy. U. S. reaction in the early 1950’s generated the 1953-54 Army-McCarthy Senate hearings seeking to identify communist infiltration of the U. S. Army specifically and American society generally.

Given the worldwide struggle between capitalism and communism, and democracy and totalitarianism, nuclear weapons inevitably served to maintain the balance of power. We must question whether nuclear weapons are still necessary. Over 15 years have passed since the end of the Cold War, fifty years since it’s beginning. It has been ninety years since the establishment of the communist Soviet Union and one hundred and sixty years since the publishing of The Communist Manifesto.

Many of the excesses of capitalism and the exploitation of workers cited in the last two hundred years have been greatly reduced in the industrialized world. Laws have been passed and regulation initiated to eliminate many of the more offensive abuses of capitalism. Unionization, minimum wages, elimination of child labor, pensions, holidays, paid vacations and leaves, prohibitions against and regulation of monopolies, and laws against price fixing represent some of the more obvious changes. Arguably the European Union with its strong historic influence of socialism and its universal healthcare now leads the world in protection of its workers and citizens. There has also been a significant rise of a middle class and the entire economic demography of the developed world has changed. The last 160 years has also seen an almost complete reversal of colonialism.

Communism too has changed. It moved from a challenging intellectual alternative to the governing philosophy in several countries with a full opportunity to prove it could succeed. The world watched as early leadership in the U.S.S.R. and the Peoples Republic of China established totalitarian states whose actions were responsible for the deaths of millions of their own citizens. The excesses of Joseph Stalin’s consolidation and maintenance of power and Mao Tse-Tung’s programs of the Great Leap Forward and the Cultural Revolution displayed a disastrous dimension of communism.

In intervening decades all three countries have had many experiences changing their relationships and perceptions of each other. Following World War II, the United States and the U.S.S.R. initiated the Cold War that included the tension of the Cuban Missile Crisis in 1962. These hostilities lasted into the 1990’s, until the disintegration of the Soviet Union. With the Cold War as a backdrop and a “domino theory” as justification, the United States participated in the Korean War facing North Korea and The People’s Republic of China (PRC). During that war tension grew dramatically when General Douglas MacArthur publicly called for the use of nuclear weapons against China. President Truman subsequently fired General MacArthur.  This war was fought to a stalemate maintaining the bifurcation of the two Koreas at the 38th parallel. The U. S. fought the war in Vietnam against the communist North that was assisted by the Chinese. This war was the United State’s first experience of defeat and its first lesson of the limits of its unilateral military capability.

The People’s Republic of China was a major force opposing the United States in two of its hot wars during the intervening decades. China was an active participant in the Korean War and a critical supply ally of Vietnam in the Vietnamese War. As a nuclear power, however, China side-stepped the runaway arms race between the Soviet Union and the United States believing instead that, in the absence of any missile defense capability, its suspected 20-24 strategic nuclear weapons and 390 tactical weapons would suffice as an adequate deterrence against an attack by either of the two nuclear super powers.96

The Soviet Union was the principal adversary of the United States during the more than four decades of the Cold War. In subsequent decades, the Soviet Union also experienced the limitations of its military capability with the failed military action in Afghanistan. Of particular interest during this period was the meltdown of the Chernoybl-4 nuclear reactor that released nuclear radiation over a wide area of the Ukraine, Belarus and Russia as well as over many countries in Western Europe. This tragedy afforded the U.S.S.R. and the world a unique experience of the threat that even a relatively small nuclear incident could represent. Reportedly the release of radioactive materials into the atmosphere necessitated the evacuation and resettlement of an estimated 336,000 people within the Soviet Union.

Undoubtedly the most profound change occurred in the U.S.S.R. when its union dissolved giving birth to 15 newly independent states. In March of 1985 the Politburo elected Mikhail Gorbachev as General Secretary of the Soviet Union. His reform policies of glasnost or political openness, perestroika or economic restructuring and uskoreniye or accelerating economic development were announced in 1986.  They presaged the seismic change the U.S.S.R. would experience. Perestroika in 1988 included one of his more radical reforms, the Law on Cooperatives, which permitted private ownership of manufacturing, services and foreign-trade businesses. Glasnost gave much greater freedom of speech and loosened restrictions on the press.  It led to an inevitable nationalism from within the 15 constituent republics of the U.S.S.R. This was fueled by the continuing failure of the Soviet economy that prompted widespread discontent among the Soviet citizenry. These and other changes significantly reduced authoritarianism and centralized control. These reforms started a process that once begun could not be stopped.

In August 1991, alarmed by signs the U.S.S.R. was crumbling, leaders within Gorbachev’s government, the vice president, prime minister, defense minister, KGB chief and other officials staged a coup.  They put Gorbachev under house arrest. Boris Yeltsin, the first popularly elected President of the Russian Republic, the most prominent of the 15 Soviet republics, condemned the coup and called for street demonstrations in Moscow to protest. After three days the coup failed with its organizers arrested. Gorbachev was released. On August 23, 1991 Yeltsin decreed the suspension of the Russian Communist Party charging that the party had supported the illegal coup thereby violating Soviet Union and Russian Republic laws.

The seeds of the disintegration of the U.S.S.R had been sown. One by one, the 15 republics declared their sovereignty. On December 25, 1991 Gorbachev officially accepted the dissolution of the Soviet Union and resigned as its president. This marked the end of the Soviet Union as the world had known it and in large measure the end of the Cold War.

The radical changes that have taken place in Russia have led to a reevaluation of the Russian threat. In June 2001 Presidents George W. Bush and Vladimir Putin met for the first time in Slovenia. The dramatic changes in both countries in the previous decades prompted Putin to say, “I want to return now to what the President (Bush) said very recently – that Russia and the United States are not enemies, they do not threaten each other, and they could be fully good allies.”97

President Bush was asked if Putin was a man that Americans can trust. President Bush responded, “I looked the man in the eye. I found him to be very straightforward and trustworthy. We had a good dialogue. I was able to get a sense of his soul; a man deeply committed to his country and the best interests of his country.”

Five years later, at a press conference with Czech President Vaclav Klaus and Czech Vice President Mirek Topolanek, President Bush declared, “The Cold War is over. It ended.”98

Communism in the People’s Republic of China has also changed. In the late 1970’s and 1980’s China opened trade to the outside world. To solve food shortages it implemented a plan of Township-Village Enterprises where food produced over the government quota could be kept and sold or traded in an open market.99 In the 1980’s diversified enterprise ownership emerged in special economic zones that were created throughout China. Private investment from outside China was encouraged. Four types of businesses are recognized in China today. There are wholly owned government businesses, stock businesses where public shares have been sold but the government retains part ownership, private businesses with no government ownership, and foreign funded enterprises that includes joint ventures and wholly foreign-owned businesses.

These decades of Chinese reforms have had a very significant impact on China’s economy. At a basic level, the growth of the Chinese economy has been credited with China’s accomplishment of lifting over 200 million of its rural poor out of poverty. China is now the world’s second largest economy and trade between the U. S. and China has grown from an estimated $4.9 billion in 1980 to over $298 billion in 2009. The expansion of trade between the two countries has created a large Chinese dollar reserve with estimates of their holdings at somewhere between one and three trillion dollars.

Changes in all three countries have not calmed all fears. A weakened Russia will inevitably attempt to grow its power and prestige to regain its influence in the world. It may also attempt to informally re-annex some of the former soviet republics. The strength and speed of growth of the Chinese economy will frighten the developed world and cause Americans to recall their historic xenophobic fears of what they called the “yellow peril”.  In this case they would fear the Chinese people rather than the Japanese.

By the same token the world will continue to be wary and distrustful of the United States. Putting aside past accusations of excessive use of power, many would point to its behavior since the attacks of September 11, 2001, as an example of its total lack of restraint in the use of its power and a declining commitment to historic American values. Cited is the initiation of two wars, one proven to be based on completely false information, wire tapping and abusing the civil liberties of its citizens, and the torture of its prisoners. This coupled with the perception of an American led global financial crisis casts significant doubt on American credibility. Russia, China, and the United States of America will never be perfect. They do however have aspirations for a better life for their citizens.

It is doubtful the world will eliminate all nuclear weapons in the immediate future. Tens of thousands of weapons exist in multiple countries, the technology is generally understood, and the belief that possession of nuclear weapons bestows power is widely held. The genie cannot be put back in the bottle. The challenge is to best manage humanity’s relationship to these weapons to assure they do not spread and will not be used until they can be eliminated.

We began this chapter on nuclear weapons by considering the reason for their existence. We identified three justifications: World War II, the Cold War, and the ideological confrontation between communism and capitalism. The result of our review of the intervening decades and the experiences of the three major antagonists should have shown that nuclear weapons and especially the nuclear arsenals of the size and scale of those in the United States and Russia have lost their reason for being. World War II ended with the Allied victory, the Cold War has been over for more than 15 years, and the ideological and military confrontation between communism and capitalism as manifested in the U.S., Russia, and China has ended. The three antagonists have all moderated their worldviews and the differences between them have largely diminished.

Nations in practice tend to follow a policy of proportionality, which is to say their weapons are proportionate to the degree of threat they perceive. In time of peace they have small standing armies. In time of war they build up forces. Internationally, there has been a practice of proportionality, where military response to aggression has been proportionate to the aggressive act. Examples are when a military incursion across a border is met by a sufficient force to repel the invader or when a full-scale assault is met by a full-scale defense. In today’s world there is no practical threat that would require the use of over 3,000 nuclear weapons. There is no nation that deserves nuclear annihilation. The only proportionality of the largest arsenals is that there are two of them.

We have allowed ourselves to think of nuclear weapons as one more tactical element of foreign policy. They are viewed myopically as bargaining chips, a pressure point, and a means of leverage in international negotiations. They have become a tool for dominance, the ultimate threat. Proliferation results from their threatened use by the nation-state bullies of the world and the jealousy with which others view them. But they are unique and far more sinister. The next human being that authorizes their use will be vilified as the worst mass murderer in human history. There will be no honors, no accolades, and no patriot status for the most notorious genocist humanity has produced.

We would assert the fear we feel is no longer of the intentions of an adversary but a fear of the existence of the arsenals themselves. As long as the weapons exist, there is a threat and fear, as improbable as it might be that there will be a change of mind or in regime, actions of a breakaway group, or weapons falling into the hands of terrorists that will once again threaten use of the weapons. All sides now fear that eliminating their weapons while those of others continue to exist makes them vulnerable. For this reason, a sound disarmament process and a means of verification are critically important.

It is now time to take the steps necessary to move the decision to use nuclear weapons from the realm of unilateral action to the diffused focus of a larger community. The world can no longer tolerate the egotism and immorality that would allow a single nation or individual to make the fateful decision to use nuclear weapons. It is also time for nations of the world to unequivocally declare they will not permit nor tolerate any nation that asserts a right to first use of nuclear weapons on any basis whatsoever. In addition, nations must declare that actual first use by any nation would be punished by a united world.

All civilized human communities eventually vest a third party with the responsibility to enforce the law within the community. Vigilantism gives way to a police force that enforces a legal system administered by courts. This offers a number of obvious benefits. It inserts neutral, uninvolved third parties in the middle of disputes. It provides for collective financial support of the police capability. It removes each citizen from threat of personal injury in the enforcement of the community’s laws. Most of all it isolates potential aggressors forcing them to confront an entire community and the epitome of peer pressure that community represents.

In an absolutely analogous way the nations of the world led by the United States and Russia have to embrace this tradition with respect to nuclear weapons. Russia and the U.S. must disarm by turning over preferably all of their nuclear weapons to a third party organization. This could be the United Nations, it could be NATO or it could be a new world body constituted specifically for nuclear disarmament. What matters is the arsenals are put in the hands of neutral, uninvolved third parties who can act as the disarmament agent managing their progressive elimination while at the same time verifying every step of the process for all parties.

A broadly based, worldwide community of nations would be an ideal neutral party. It would spread responsibility and accountability to the widest extent possible. In a same way foreign embassies are created, existing missile sites could be designated international territory with the disarmament agent assuming joint control of them. In a transition, they could be given the second key and control of a portion of a launch code to eliminate any further possibility of unilateral action and yet still give the host country a measure of participation and control in the process. Ultimately, full control would change hands and the progressive elimination of the arsenals could be completed.

Soon after the end of World War II, over 60 years ago, there was discussion of placing nuclear weapons under the control of the United Nations. Those discussions occurred too soon. The United Nations was too young, the weapons too new and the relationships among nations too fragile. This is no longer the case. We are experiencing a relative period of peace where the global nuclear threat does not come from nation states, excluding Iran and North Korea, but rather can be found among terrorist organizations. This time of relatively peaceful relations offers the world’s nation states a singularly unique period in which to begin a process of total nuclear disarmament.

This should not be interpreted to mean we should minimize or ignore the threat from terrorist organizations. Nor can we ignore nation states that are committed to another country’s destruction or believe they can advance their beliefs and protect their cultures through their own martyrdom. Both must be prevented from achieving their ends. Most importantly the world must safeguard its nuclear materials and weapons keeping them from falling into the hands of terrorist organizations or rogue states.

Most people would credit the development of nuclear weapons as the tipping point where human beings moved from being incapable of destroying all life on planet Earth to fully capable. We have three examples of imminent threat to humanity and life on our planet. Destruction of the ozone, global climate change, and nuclear weapons are all problems that are here and now and are the result of human actions. Protection of the ozone appears to be underway, although continued use of dangerous chemicals in developing countries may slow further progress. Global climate change has now been recognized and accepted as a clear and present danger that will require effort from all of humanity on an unprecedented scale. It awaits leadership and commitment from Homo sapiens to begin a resolution. Nuclear weapons represent an ongoing failure and may in the final analysis require a unilateral act, disarmament, from one of the two antagonists to prevent another unilateral act, a nuclear attack, from the other.

All three of these challenges will involve a long term commitment that will, at a minimum, take decades to fulfill and at a maximum will involve centuries of effort. Only we have the capability to undo what we have done. Only we can take action to counter our earlier mistakes, setting right the chains of events that, if left unchecked, continue to threaten our existence. Life must have time to fulfill its potential. Only by our actions can we give it the opportunity to complete its process. We need but act.




Protect Life Imperative — Synthetic Biology


The first three risks to life on Earth, the ozone hole, global climate change, and nuclear weapons are now apparent to most. When U.N. scientific panels resolved questions about the science of climate change the need for action was accepted by most of the world’s leadership with early first steps identified. Ultimately we need to repair and reverse the damage we have caused.

Humanity is in a different situation when facing the next threat, the successor science to genetic engineering, synthetic biology. At present there is little public knowledge of the differences between genetic engineering and its benefits and synthetic biology and its risks. Genetic engineering is a largely cut and paste technology using techniques and tools to move naturally occurring segments of DNA from one organism to another. Synthetic biologists are attempting to use the knowledge from genetic engineering to assemble life that would not and could not occur in nature or an attempt to build new alien life forms from the bottom up. Synthetic biology, having begun after the year 2000, is new enough that thoughtful human action may still alter the future course and limit risk.

Maturing over three decades, genetic engineering represents efforts to alter the genetics of life. It is a cut and paste technology using techniques and tools to move naturally occurring segments of DNA from one organism to another. Its processes are referred to as recombinant DNA splicing. While genetic engineering has been controversial because of instances of contamination of the food supply100 and because genetic modifications are seen as unpredictable, its proponents can argue with some credibility that so far it has been managed responsibly.

The impact of the science of genetic engineering is significant. For example, natural barriers have evolved to prevent the wholesale merging of genes between unrelated species. Genetic engineers, however, have overcome all barriers and can now create new recombinant DNA, intermixing genes from completely unrelated species almost at will. For example, natural life processes that would normally prevent the breeding of a sheep and a human to produce a new variation of life have been breached. Genetic engineer, Esmail Zanjani, University of Nevada-Reno, has now combined genes from the human species with those of a sheep.101 The motivation for these experiments was to create organs in a sheep which could be transplanted to a human body without rejection because the organs contain human DNA. Sheep that were produced in these experiments had 85 percent animal cells and 15 percent human cells.

Other examples of genetic engineering include breeding a variety of mice that have no fear of cats to shed light on the behavior of mammals and the nature of fear.102 Consider experiments that injected human embryonic stem cells into the brains of fetal mice.103 According to researchers, the experiment proved human embryonic stem cells will apparently grow to look like mouse cells in the brain and communicate normally with other cells within the skulls of living mice. This followed earlier research where brain cells from aborted human fetuses were injected into the brains of rodents and survived and migrated to various regions within the rodent brains.

While representing arguably beneficial ambitions, these experiments demonstrate the unlimited array of genetic combinations that can be accomplished. In these examples, the research organizations were reputable and well respected. The sheep-human chimera (\kī-‘mir-ə\), or an animal containing genetic material from two unrelated living species, was engineered at the University of Nevada’s School of Medicine. The fearless mice were engineered at the University of Tokyo. The human brained mice were engineered at the Salk Institute in La Jolla, California.

Putting aside questions of the legitimacy of these types of experiments or their potential benefits let’s acknowledge they were conducted under deliberate conditions with explicit precautions. In the case of the Salk Institute these experiments reportedly had advance review and approval by scientific panels following voluntary guidelines produced by the National Academy of Sciences and guidelines that have been made mandatory in California for state grant recipients. We can also assume strict precautions were taken to insure the strict captivity of the genetically modified animals to prevent their escape.

Contamination of long grain rice crops in the U.S. by genetically modified herbicide resistant rice, taco shells containing genetically modified corn approved only for use in livestock feed, and accidental release of crops engineered to make a vaccine to control pig diarrhea, while alarming to many, were identified and are being addressed.104, 105,106,107,108 While illustrating the difficulty of controlling the spread of genetic modifications, they apparently did not pose an immediate threat to humans or life itself. Nevertheless detractors cite a 2011 Canadian study at Sherbrooke Hospital that found herbicide/insecticide toxins from genetically modified plants in the blood streams of non-pregnant women, pregnant women and their fetuses.109

Use of genetically modified organisms in agriculture and the food supply is relatively new. Having only begun on a wide scale in the mid 1990’s it has grown rapidly. The International Service for the Acquisition of Agri-biotech Applications (ISAAA) estimated that in 2003 over 167 million acres worldwide were planted with genetically engineered crops.110 These crops have flourished in the United States in an environment of little regulation. The U.S. Department of Agriculture reported that of approximately 160 million acres planted with corn, soybeans, and cotton in the U.S. in 2007, over eighty percent or 130 million acres were planted with genetically modified varieties. Further, some years ago the Biotechnology Industry Organization (BIO) estimates that between 60 and 70 percent of the processed foods U.S. consumers buy in their grocery stores contain oils or ingredients derived from genetically engineered corn and soybeans.111   This percentage is significantly higher now.

The United States has experienced considerable excitement over genetic engineering. This excitement is expected given many of the scientific discoveries opening the field were made by Americans. Compared to other countries that closely regulate or have banned genetically modified organisms in their food supply the U.S. is unique in its relative lack of restraint. Unfortunately, this same absence of restraint is now being applied to synthetic biology; an area where many believe far greater caution and regulation is warranted.

While genetic engineering works with existing DNA to produce novel combinations, synthetic biology is an attempt to build new life forms from the bottom up. Through knowledge that goes deeper than DNA, RNA, base pairs, genes, enzymes, and amino acids, synthetic biology seeks to work below the level of the gene down to the codon level (a series of three chemical bases linked in a specific order that determines which amino acid is produced in a cell). Synthetic biology merges techniques from genetic engineering, nanotechnology that manipulates matter at the atomic level, and high-speed computers with sophisticated software. Synthetic biologists believe they can now engineer new life forms much as a circuit design engineer builds a new computer chip.

Unlike genetic engineers who work with elements of life that occur naturally, synthetic biologists are attempting to assemble life that would not and could not occur in nature. Detractors argue that these self-sustaining forms of life threaten our existence unlike any other danger we have faced in the past. They point to the unpredictability of what would happen should completely foreign and alien organisms gain access to our environment. This is why they are so concerned about the inherent dangers.

Numerous approaches are being pursued in synthetic biology. A successful approach has been to take a bacterium and “knock out” or disable its genes until it has the smallest number of genes necessary for its survival.112 Bacteria used in these experiments include Mycoplasma genitalium, which often causes urinary tract infections, Bacillus subtilis, some strains of which are resistant to antibiotics, and E. coli which is naturally occurring in the intestines of warm blooded animals. All chosen for their small genomes, these bacteria, in a stripped down form, would then be used to serve as a host or platform in which to insert artificially constructed genetic material to form new synthetic organisms.113, 114

Another approach is to assemble an inventory of discrete DNA parts or modules that could then be put into bacterial hosts such as yeast or E. coli to create new organisms. Companies have been formed to fabricate DNA to order.115 These companies have joined an increasing number of academic labs established to perform the same service. In these cases, the objective is to have a researcher specify the genetic sequence they want created and the companies or academic institutions will construct it and insert it in a bacterium delivering the customer a living cell culture.

Some research teams are trying to build a living cell completely from scratch. In this case, they are attempting to construct a living cell without use of DNA. Rather they have constructed a double helix molecule that uses a peptide nucleic acid, PNA, rather than DNA. The backbone of the molecule is made from peptides instead of sugar-phosphates. Peptides naturally occur in proteins. This is a case where the resulting genetic material and resulting living organism would not and could not occur in nature.

Still others have stated they are trying to synthesize genes that together create chemical processes found in isoprenoids or compounds that naturally occur primarily in plants. They are attempting to create new metabolic pathways to turn various microbes into miniature chemical factories to produce the isoprenoids. They ultimately see themselves as able to modify enzymes in living organisms to produce or grow a number of different molecules, even some that don’t exist in nature. In their minds, these different manufactured and grown molecules could include commercial drugs, plastics or biofuels.

Finally, other companies are creating genetic models that add artificial nucleotide bases beyond the four that naturally occur in life as we know it. They seek to produce new synthetic organisms that have six or even twelve nucleotides. These companies have demonstrated synthetic biological molecules that can be chemically synthesized so they reproduce and pass their genetic information on to successive organisms the way DNA does. These companies do not believe their organisms could survive outside the laboratory but see them as possibly useful in creating life on other planets. They have designed a genetic system that is unlike any living system on our planet. Their objective is within a few years to have an artificial life form that can reproduce, evolve, learn and respond to environmental change. Again, this life form will be totally alien to all life that exists on earth.

People want to be at the forefront of their fields. Professional optimism and ambition about breakthrough technologies always generate excitement. Most commonly there is a race to apply the latest technology and be the first to bring it to market. This assumes there is no risk to the immediate application and wide scale adoption of the technology as has proven to be the case with products from computers, to cell phones, to the internet. Most do not pose the risks seen with synthetic biology. What is happening in synthetic biology and to a large extent with genetic engineering is thousands of people are pursuing a genetic land rush by staking claims to own the genetics of life.116 Two questions for humanity are should we think about synthetic biology the same way as genetic engineering and should we let scientist-entrepreneurs and venture capitalists own life? 117

Given the progress to put genetic tools at human disposal at the molecular level and the clear possibility of constructing completely foreign living organisms, it is not surprising there are countless numbers of public and private organizations around the world viewing synthetic biology as a new commercial frontier.118 Companies have been formed by venture capitalists, large multinational conglomerates are heavily investing, and governments and non profits are providing multi-million dollar grants to genetically create alien life for someone’s profit.119 On an international level, governments view competency and leadership in this new scientific area as an opportunity to advance their position in competition with the rest of the world. This excitement is at one and the same time the promise and peril represented by this new area of science.

The life process is arguably the most powerful process in the universe. Experimentation has shown the genetics of life is flexible and remarkably malleable by human kind. Having survived for billions of years, life had to have inherent flexibility allowing mutation to produce variations that proved crucial to survival. These naturally selected variations insured life would overcome threats in its environment. Life’s points of vulnerability to bacteria and viruses, and processes it developed allowing modification, variation, and repair of its genetic code are the tools of synthetic biologists.

The science is vulnerable to missteps and miscalculations as humans make wholesale modifications to genetic code which evolved through trillions of small incremental changes over billions of years.120 Detractors claim the attempt to create alien forms of genetic material with which we have no experience has potentially more risk than any other single area of science. They charge that experimentation is proceeding before we have a full understanding of the implications of what is being created. This is because entrepreneurs are rushing to be first to create a billion dollar monopoly by patenting and creating a new life form.

It is useful to pull back from the details of the genetic sciences and look at the processes at work that brought us to this point. Life has existed for billions of years. Evolution has been the organizing process under which species have developed, survived, and prospered. Natural selection has been sorting and sifting genetic changes to favor organisms with characteristics that are necessary for survival. Natural barriers and protective mechanisms have formed within cells and species to protect them from the invasion of detrimental and harmful organisms and their genes that would threaten not only the individual, but the species as well. Life forms with these barriers and protections survived and were naturally selected, those without them died.

Some of the organisms that life has produced are natural parasites that have unique abilities to invade cells and hijack their reproductive processes to insure the parasite’s continued existence at the expense of the host organism. These include viruses and bacteria. Both are being used as vectors to transport genetically modified DNA from one cell to another or as hosts to house alien genetic material. This is not because the bacteria and viruses are beneficial but because as organisms they have the ability to compromise barriers and protections that have developed over billions of years. In short, human genetic engineering and synthetic biology represent the discovery of the means to compromise or bypass life’s natural defenses.

Humanity has considerable experience with the risks of bacteria and viruses. The world spends much effort dealing with infections caused by bacteria that wreak havoc with human beings such as Lyme disease and cholera. Naturally occurring viruses have given man the West Nile virus and numerous variations of flu virus including the Spanish, Asian, Swine and Avian flus. One of the deadliest viruses infecting humanity occurred when a virus jumped from one species that developed immunity to another with no immunity. This is the HIV virus. Scientists believe HIV, the precursor to AIDS, first evolved from a simian immunodeficiency virus (SIV) in chimpanzees and an SIV virus in a sooty mangabey monkey.121

Most AIDS researchers theorize that the “bushmeat trade” or slaughter of monkeys for their meat, allowed the HIV-1 virus and HIV-2 virus to enter the human bloodstream through cuts, bites, or scratches on the hands and arms of those who killed and butchered infected chimps and monkeys. Others believe the virus may have crossed over to human beings as a result of the large scale culturing of a polio vaccine using simian cells which was subsequently administered to thousands of human beings in Africa.122 The Joint United Nations Programme on HIV/AIDS estimated in 2007 that over 25 million people have died of AIDS since 1981 with 2.1 million dying in 2007 alone. An estimated 33.2 million people were living with HIV/AIDS in 2007.

We also have recent experience with the use of the tools of genetic engineering and synthetic biology to reproduce proven pathogens. These are living microorganisms such as a bacterium or fungus that cause disease. Genetic engineers and synthetic biologists have created pathogens in the laboratory that had previously been completely or nearly completely eliminated from the face of the earth.

In 2005 a team led by Dr. Jeffrey Taubenberger of the U.S. Armed Forces Institute of Pathology and researchers from the Mount Sinai School of Medicine in New York and the U.S. Center for Disease Control in Atlanta recreated the 1918 Spanish Flu virus.123 The Spanish Flu is credited with killing as many as 50 million people worldwide in 1918. Working with a tissue sample from a flu victim buried in the Alaskan permafrost, these teams identified the virus’ gene sequence that was used as a template as researchers genetically engineered an identical DNA strand. The constructed genetic material was incorporated into a bacterial plasmid and then inserted into human kidney cells where the virus assembled itself into a virulent form.124

In 2002, Dr. Eckard Wimmer, leading a team of researchers at the State University of New York at Stony Brook, genetically engineered a poliovirus.125 Of interest was that they specified the genetic sequence necessary to create the virus and then successfully ordered genetic fragments from a mail order biofab company which produced and delivered the synthetic DNA strands to them. With these strands Dr. Wimmer’s team was then able to inject the de novo virus into mice successfully infecting them. It was the unchallenged mail order nature of the production of the genetic material that was most troubling.

Similarly, in June of 2006 James Randerson, a science correspondent at The Guardian, a British newspaper, announced he had ordered and had delivered to his home a fragment of synthetic DNA for the smallpox virus.126 Commercially produced at VH Bio Ltd., this strand would have been sufficient to create the smallpox virus. Smallpox is estimated to have been responsible for between 300-500 million deaths in the 20th century alone. In the early 1950s an estimated 50 million cases of smallpox occurred in the world each year. Smallpox is a virus that was eradicated from the planet by the World Health Organization in 1977.127

Life processes are insistent and persistent and just as life has proven remarkably resilient and tenacious in its quest to survive and procreate, synthetic life forms may prove equally determined. The scientists who are engineering them do not know how resilient they are nor does the government that refuses to regulate them or entrepreneurs and venture capitalists that are funding them. The general human population that has never even heard of them also does not know. We do know that living organisms mutate, change and adapt. We have no idea, should any of these synthetic biological organisms gain their freedom, what humanity will be facing.

The full extent of the potential benefits and risks of synthetic biology are beyond the scope of this analysis. It is clear, however, that while some benefits may be significant, the risks are great.128 In light of the significant risks, is it responsible to allow synthetic biology businesses to be unregulated and uncontrolled with only their profit motive to guide their actions? 129 Putting aside significant risks of conscious efforts to construct biological genetically engineered organisms which can be used as weapons or individuals working to consciously create hazardous life forms, the greater risk may be one of unintended consequences.

The risks of release of these synthetic organisms may derive from the well meaning but ill informed and ill considered researcher in a $10,000 laboratory.130 As was the case with genetically modified rice, the contamination may come from a large multinational conglomerate assisted by a trained and professional educational institution. Or the release of a synthetic organism may come from venture capitalists denying further funding to a startup whose personnel in closing down will simply discard dangerous organisms in their local trash bin. Under these circumstances it may take months, years or a decade or more for a surviving synthetic organism to communicate its existence to us. At that point it may be too late. Can we run the risk of release of a synthetic organism?

The progress of the genetic sciences illustrates almost any set of imagined circumstances can now be accomplished given available tools. The genetic genie cannot be put back in the bottle. There will be ongoing research. Humanity must exercise great caution with how it allows synthetic biology to progress. Unlike what we faced with the ozone hole, global climate change or nuclear weapons, we have the opportunity to preemptively assert management of the science to insure we at least minimize the risks.

We must insure that allowed experimentation is supervised and conducted with rigorous safety precautions. We must assert humanity is not prepared to accept the significant risks an entrepreneur or corporation is willing to take for the sake of their profit. As discussed in the section on the ozone hole, when humanity thinks about synthetic biology we should assume we would err. We will never be exactly right in our timing or our efforts. We will always be too soon or too late and will always do too much or too little. Ours is to decide how we want to err.

In the past we have not had the option to be too early. We had to react to threats that were perceived after they were already upon us. With synthetic biology we can choose to be early. We can decide to slow the pace of this scientific progression and take steps to allow us to better manage future effects. The following are steps we must take consistent with our conclusions if we are to discharge our responsibility as custodians and guardians of life.

Only an informed citizenry should decide to consume genetically engineered food. We must insist genetically or synthetically engineered food, plant or animal, be clearly identified through mandatory and detailed labeling. The world has unfortunately passed the threshold of informing its populace. In many countries, most notably the U.S. and Canada, people have not been told they are consuming grains that have been altered to resist a company’s manufactured poisons, herbicides or pesticides. With labeling we could be equipped to decide what we are willing to allow to be put into our bodies and the bodies of our children. Further there should be periodic and rigorous testing of crops whether intended for planting to produce seeds, for animal feed or for human consumption to insure that unanticipated or intentionally motivated genetic contamination has not occurred and is not allowed to spread.

Finally we need to recognize that life’s gene pool is its most commonly shared asset. The collective owner of the gene pool is life itself. It is the basis of all living things and determines success or failure of each succeeding generation of all of the world’s species. Given the universally shared nature of the asset, we should assert that no individual, corporation or government could own the genetics of a living organism naturally occurring, genetically engineered or synthetically created using knowledge of existing life forms or life processes.  It was after all, the study of the processes used by viruses and bacteria that taught us how to do what is now being done.  These processes must be viewed as naturally occurring and not human invention.

While some may argue such a step would dramatically halt investment and hence progress in synthetic biology, others would suggest removing the profit motive slows the precipitous rush and returns this science to the scientist. Basic science has always been pursued where potential benefit can be seen. Given the risks posed by synthetic biology a deceleration to a more deliberate pace may be how humanity manages the risks of the science. We can develop other means to provide incentive and reward the scientific community for continuing the basic research and science. We can use new mechanisms to encourage businesses to bring advances to market. Our intent must be to continue to allow the advancement of knowledge and human benefit while consciously protecting life’s most precious assets, its genetic code and life processes.

Comments (0)

Tags: , , , , , , , , ,

Businesses Join the GM Labeling Fight

Posted on 06 May 2013 by Jerry

We could be cynical about Whole Foods declaring it will require all its suppliers to label products that contain genetically modified ingredients by 2018.  We could be skeptical, if it weren’t so exciting and part of a larger trend of businesses weighing in to protect their interests.  We could see the Whole Foods announcement, known for its “organic” products, as just moving closer to their customers, who have been lobbying the chain to get involved.  On the contrary however, we see it as potentially a historic turning point in the U.S.

The Food and Drug Administration is rumored to be about to approve genetically modified salmon developed by AquaBounty for sale in U.S. stores (see an earlier post on this blog).  This would be a major milestone since it would constitute approval of the first genetically modified animal to enter the U.S. food supply.

This development threatens the natural salmon fishing industry in Alaska and elsewhere.  It has prompted many more businesses to join the anti-GMO ranks.  Trader Joe’s and other grocery retailers representing more than 2,000 stores have announced they will not carry the GM salmon if it is approved for sale.

The prospect of GM salmon has led to the introduction of federal mandatory labeling legislation, the Genetically Engineered Food Right-to-Know Act.  This unites mandatory labeling forces with the fishing industry to continue the fight.  Sponsors of the legislation include U.S. Senators from California (Barbara Boxer), Alaska, New York, and Vermont and House Representatives from Alaska, Oregon, Maine, New York and Washington.

This is not to say the other side of the labeling debate has not been lobbying for its positions.  Quiet meetings between the FDA and pro-GM forces are reported to have taken place as companies lobby for neutered and watered-down labeling requirements that pre-empt the states.  Companies participating in these meetings are said to include behemoths such as Wal-Mart, Coca-Cola, General Mills, Pepsi-Frito Lay, and Mars.

State legislation and ballot measures have not yet been successful other than in Alaska where legislation has passed calling for the mandatory labeling of genetically modified salmon. While state labeling bills are still pending in Connecticut, Missouri, Vermont and Washington state, legislation in New Mexico was allowed to die on the state senate floor.

Ben & Jerry’s Ice Cream also announced it would commit to sourcing non-GMO ingredients for all of its products everywhere by the end of 2013.  They also stated they would transition packaging so all products will be labeled with respect to GMO by the end of 2014.

While owned by international conglomerate Unilever, the terms of its sale required a measure of ongoing independence of a separate subsidiary board of directors unusual to corporate acquisitions.  In addition, some would argue this is not a big deal because of the small size of the B&J product line, that 80% of its ingredients are already non-GMO, and that mandatory labeling is required in the E.U. and U.K.

The U.S. government defines the use of the word organic on a label.  Amongst other things, it identifies products that do not have GM ingredients.  People concerned about the healthiness of their food have a history of paying more for this organic assurance.  Whole Foods has a net profit margin approaching 4% that is more than twice as big as the less than 2% net margin of average retail/wholesale food grocery stores.

Because labeling is a worldwide issue and complex, the identified links below provide additional information.  At present there are 64 countries identified as having mandatory GMO labeling requirements (see below).

For those people looking for a way to be involved or to impact this labeling issue in the U.S. I suggest you put personal pressure on the businesses with which you do business.  We need to learn from the effectiveness of people who lobbied for a change of policy at Whole Foods.

In addition, you should go to www.justlabelit.org.  While hundreds of organizations have declared support for mandatory labeling, Just Label It has become a focal point for individual involvement and grassroots lobbying of elected officials.  I am convinced they are one of the most effective points of entry today.

Use the following links to obtain more information:










Comments (0)

Advertise Here
Advertise Here
February 2018
« Feb